Calculus AB

3-3 and 3-4
$1^{\text {st }}$ and $2^{\text {nd }}$ Derivative Tests
Look for relationships between the graph $f(x)$ and $f^{\prime}(x)$ and $f(x)$ and $f^{\prime \prime}(x)$.

First Derivative Test-

1) if $f^{\prime}(x)$ changes from negative to positive atc, then $f(c)$ is:
2) if $f^{\prime}(x)$ changes from positive to negative at c, then $f(c)$ is:
3) if $f^{\prime}(x)$ does not change signs at c, then $f(c)$ is:

Second Derivative Test-

1) if $f^{\prime \prime}(x)>0$, then $f(c)$ is:
2) if $f^{\prime \prime}(x)<0$, then $f(c)$ is:
3) if $f^{\prime \prime}(x)=0$, then the test fails (use first derivative test).

Find the critical points of f (if any). Find the open intervals on which the function is increasing or decreasing and locate all relative extrema. (pg 186)
22) $f(x)=x^{3}-6 x^{2}+15$
36) $f(x)=\frac{x+4}{x^{2}}$

Assignment:
Pg. 186
17-41 odd, 85

